Tegangan σ = F A Regangan e = Δ L L i. Perbandingan antara tegangan dan regangan disebut sebagai Modulus Elastisitas atau Modulus Young (Y). Sehingga dalam hal ini rumus modulus elastisitas atau modulus young adalah sbb: Y = σ e Y = F × L A × Δ L. Tidak semua benda dapat kembali ke bentuk semula setelah dikenai gaya.
75× 6,4 = 480. 60 × 8 = 480. 40 × 12 = 480. 480 merupakan konstanta perbandingan. xy = 480, atau y = 480/x. Perbandingan (rasio) y/x tidak selalu sama. Sedangkan hasil kalinya, x × y adalah konstan, yang selalu sama. Karena hasil kali dua variabel adalah konstan, kondisi ini dikatakan perbandingan berbalik nilai. y berbanding tebalik
SoalDan Penyelesaian Fisika SMA - Soal Fisika yang berhubungan dengan Listrik Dinamis atau Arus Listrik Searah kami pilihkan sebanyak 60 soal yang kami bagi menjadi 3 bagian, dan inilah bagian kedua dari rangkaian 60 SOAL PENYELESAIAN ARUS LISTRIK SEARAH. Pada Soal Jawab Listrik Dinamis bagian pertama, kita sudah menyelesaikan soal nomor 1 sampai soal
Berikutini terdapat beberapa fungsi dari grafik, yakni sebagai berikut: Untuk memvisualkan informasi kuantitatif dengan akurat. Untuk mengklarifikasi peningkatan, perbedaan suatu tujuan maupun kejadian yang saling berinteraksi secara ringkas dan jelas. Grafik dirangkai menurut pada dasar matematika dengan memakai informasi yang komparatif.
hubunganantara variabel X dan Y membentuk hubungan non linier. Gambar 2. Residual Plot Hubungan antara X dan Y 5. Perbandingan R-Kuadrat Pada SPSS anda masuk ke CURVE FIT (ANALYZE – REGRESSION
Gambardibawah ini melukiskan perbedaan antara transfer teknologi dan transfer from ACCOUNTING MISC at Asian Banking Finance and Informatics Institute Perbanas - Indonesia
Panjangsisi terpanjang adalah panjang sisi yang berada didepan sudut 90° Panjang hipotenusa adalah panjang sisi miring atau sisi terpanjang Dengan perbandingan. 30° : 60° : 90° = 1 : √3 : 2. Dan jika besar sudutnya. 45° : 45° : 90° = 1 : 1 : √2. Pembahasan: dalam segitiga istimewa, yaitu segitiga yang memiliki sudut-sudut 30°, 45
36 Perhatikan proses mekanisme terjadinya menstruasi dibawah ini Hormon yang memacu proses pembentukan sel ovum pada (X) dan hormon yang berperan pada peristiwa (Y), secara berturut-turut yaitu A. FSH dan LH B. LH dan FSH C. FSH dan estrogen D. FSH dan progesteron E. Progesteron dan estrogen 37. Perhatikan sel tumbuhan dibawah ini
2 Dua buah balok dihubungkan dengan seutas tali dan diam di atas lantai datar licin seperti pada gambar di bawah ini. Balok pertama bermassa 6 kg dan balok kedua bermassa 4 kg. Apabila gaya horizontal sebesar 40 N dikerjakan pada balok kedua, maka tentukan percepatan tiap balok dan gaya tegangan tali penghubungnya.
Dibawahini yang tidak temasuk security vpn adalah; Gambar garis yang mempunyai persamaan y=-2 1/2x adalah; Gradien garis yang mempunyai persamaan y = 2x + 5 adalah Berikut ini manakah yang merupakan syarat –syarat kalam? Matriks biner; Piranti perangkat keras pengambilan gambar tidak terformat; Di bawah ini catatan transaksi p.a jalan lancar
Perhatikangambar dibawah Perbandingan yang benar adalah AEB ECED EA C EDEC. Perhatikan gambar dibawah perbandingan yang benar. School SMA Negeri 4 Bekasi; Course Title MATEMATIKA 212; Uploaded By nadrakakikaeru. Pages 24 This preview shows page 7 - 11 out of 24 pages.
Modelfisik dari getaran bebas tanpa redaman dapat dilihat pada gambar dibawah ini: m k x Gambar 2.1: Model Fisik Sistem Getaran Bebas 1 DOF Tanpa Redaman Dimana, x adalah simpangan m adalah massa k adalah konstanta pegas Untuk mendapatkan model matematika dari model fisik di atas yaitu dengan dilakukan analisis diagram benda bebas (FBDA )
Perhatikanlahgambar berikut ini. Tentukan sudut-sudut yang merupakan pasangan sudut luar berseberangan dengan sudut-sudut berikut. a. ∠EID b. ∠BKH c. ∠CIE 26. Tentukanlah nilai x dan y. a. 27 ° 35 ° x ° b. 26 ° 63 ° x ° y ° A B D C H I J G F H K 179 MATEMATIKA c. 2x+40 ° x+80 ° y d. 102 ° 41 ° x ° e. 80 ° 5x ° 7y ° 27
Padagambar di atas, perbandingan antara x dan y adalah .
Prosesyang ditunjukkan oleh huruf X adalah fotosintesis, yaitu perubahan senyawa karbon anorganik (CO 2) menjadi senyawa karbon organik oleh tumbuhan. Sedangkan gambar yang ditunjukkan oleh huruf Y adalah penguraian, yaitu proses penguraian senyawa karbon organik yang terdapat di dalam tubuh organisme yang terjadi saat organisme tersebut mati.
WJOFQT2.
Ilustrasi Matematika Foto PixabayCara menghitung rumus perbandingan menjadi salah satu soal yang sering ditemukan dalam mata pelajaran Matematika. Biasanya, soal-soal tersebut termasuk dalam materi tentang umum, perbandingan adalah selisih atau perbedaan dari dua nilai atau lebih dengan mengikuti pola kesamaan tertentu. Ukuran yang dibandingkan harus memilki besaran dan satuan yang sejenis. Satuan yang dimaksud bisa berupa panjang, kecepatan, massa, waktu, banyak benda, dan dalam Matematika bisa ditulis dalam bentuk pecahan atau tanda colon . Misalnya 3 banding 6 ditulis dengan 36 atau 3/ dua syarat yang harus dipenuhi sebelum membentuk rumus perbandingan, di antaranyaNilai yang dibandingkan harus memiliki satuan yang sejenis. berat, panjang, waktuBentuk satuan nilai yang dibandingkan harus sama. cm, kg, menit, detik, jamAda banyak aplikasi perbandingan dalam kehidupan sehari-hari. Salah satunya yang paling umum adalah proses pembuatan peta, yakni membandingkan ukuran daerah asli dengan ukuran perbandingan lainnya yakni saat membuat roti. Dalam prosesnya, terdapat campuran tepung terigu dan tepung tapioka yang membutuhkan perbandingan tertentu. Lantas, bagaimana cara menghitung perbandingan secara umum? Ketahui jawabannya dalam penjelasan berikut Cara Menghitung Perbandingan?Ilustrasi cara menghitung perbandingan. Foto Unsplash. Untuk menentukan perbandingan secara umum, Anda bisa menggunakan konsep pembagian yang sederhana. Agar lebih paham, simak contoh soal Matematika di bawah iniBerapa perbandingan umur A dan B?Jadi, perbandingan umur A dan B adalah 10 kain memiliki panjang 2,5 meter dan lebar 1,5 meter. Berapa perbandingan panjang terhadap lebar kain itu?Perbandingan panjang terhadap lembar karpet= 2,5 1,5 = 53Jadi, perbandingan panjang dan lebar kain adalah 5 Menghitung Hasil PerbandinganSetelah mengetahui cara menghitung perbandingan, Anda juga bisa menghitung hasil perbandingan dengan rumus perbandingan berikut iniHasil X = Perbandingan X / Total Perbandingan . Total HasilAgar lebih paham dalam menentukan rumus hasil perbandingan, simak contoh soal cerita berikut iniSeorang pengusaha mendapat modal dari investor untuk membentuk perusahaan. Pengusaha dan investor membagi keuntungan dengan perbandingan berikut= Pengusaha investor 21Keuntungan bersih perusahaan untuk bulan ini adalah Rp 100 juta. Berapa masing-masing keuntungan yang didapat pengusaha dan investor?Keuntungan perusahaan = Rp 100 jutaTotal perbandingan=2+1= 3Hasil X = Perbandingan X / Total Perbandingan . Total HasilPengusaha= 2/3 x Rp 100 juta = Rp 66,7 jutaInvestor= 1/3 x Rp 100 juta= Rp 33,3 jutaJadi, pengusaha mendapat keuntungan sebesar Rp 66,7 juta dan investor sebesar Rp 33,3 juta dari total keuntungan Menghitung Perbandingan SenilaiIlustrasi soal matematika. Foto PexelsPerbandingan senilai adalah perbandingan yang antarnilai lainnya berbanding lurus. Artinya, apabila ada variabel yang nilainya bertambah, maka nilai yang lainnya akan ikut bertambah. Sebagai contoh, apabila nilai variabel A semakin besar, maka nilai variabel B juga ikut semakin besar. Untuk menghitung perbandingan senilai dapat dilakukan dengan dua cara, yaitu berdasarkan nilai satuan dan perbandingan. Berikut rumus atau persamaan untuk perbandingan senilaiAgar lebih paham dalam menentukan perbandingan senilai, berikut contoh soalnya yang bisa dipelajariContoh Soal Perbandingan Senilai Berdasarkan Nilai SatuanDiketahui harga 10 buah mangga adalah Tentukanlah harga 25 buah mangga!Jika jumlah mangga bertambah, berarti harganya pun Harga 10 buah mangga = Ditanya Harga 25 buah mangga? Harga 1 buah mangga = 10 = harga 25 buah mangga = 25 x = Soal Perbandingan Senilai Berdasarkan PerbandinganHarga 4 buah pensil adalah Berapakah harga 2 lusin pensil?Jika pensil bertambah, maka harga pensil juga ikut Harga 4 buah pensil = Harga 2 lusin pensil?Harga 4 buah pensil = 2 lusin pensil = harga 24 buah pensil = 4 = 24 y y = 24 x 4 = harga 2 lusin pensil adalah Menghitung Perbandingan Berbalik NilaiPerbandingan berbalik adalah perbandingan yang antarnilai lainnya berbanding terbalik. Artinya, apabila ada variabel yang nilainya bertambah, maka nilai yang lainnya akan turun. Berikut contoh soalnyaUntuk menempuh jarak kota C dan Kota D dengan menggunakan truk memerlukan waktu 2 jam dengan kecepatan rata-rata 70 km/jam. Berapa kecepatan rata-rata untuk menempuh jarak itu, jika waktu yang diperlukan 4 jam?Jika waktu bertambah, maka kecepatan rata-rata berkurang perbandingan berbalik tempuh jarak kota C dan kota D adalah 2 jam dengan kecepatan rata-rata 70 km/jamDitanya Berapa kecepatan rata-rata jika waktu tempuh 4 jam?Jika waktu tempuh 2 jam, maka perbandingannya adalah waktu kecepatan = 2 60 Jika waktu tempuh 4 jam, maka perbandingannya adalah waktu kecepatan = 4 yJadi, dengan waktu 4 jam diperlukan kecepatan 30 km/ Menghitung Perbandingan BertingkatIlustrasi mengerjakan soal matematika. Foto PexelsPerbandingan bertingkat adalah perbandingan tidak langsung. Jadi, Anda tidak bisa melihat secara langsung hasil perbandingan dalam soal. Dalam menentukan perbandingan bertingkat, Anda harus menghitung data-data yang disajikan lebih dulu untuk menetapkan perbandingan. Dikutip dari Rumus Cepat Matematika untuk SD Cara Mudah dan Cepat oleh Indah Hanaco 2013 118-119, berikut contoh soal perbandingan bertingkat yang bisa jumlah pohon jambu dan pohon pisang di kebun sekolah adalah 7 4. Perbandingan jumlah pohon jambu dan pohon mangga adalah 2 3. Jika jumlah pohon pisang 16, berapa jumlah seluruh pohon?Misalkan jambu = J, pisang = P, dan mangga = M. Jika ditulis, perbandingan ketiganya dapat dilihat sebagai berikutPohon yang memiliki dua angka perbandingan adalah J. Hanya J yang memiliki angka perbandingan dengan P di satu sisi dan dengan M di sisi lainnya, sehingga P dan M harus dikali dengan J, dengan cara menyilang. Berikut penyelesaiannyaKalikan deretan angka di atas dengan J di deretan kedua. Berarti J = 14 dari 7 x 2 dan P = 8 dari 4 × 2.Kalikan deretan angka di deretan M kedua dengan J di deretan pertama. Jadi, M = 21 dari 3 × 7. Sementara J tidak perlu dihitung lagi karena sudah dilakukan di bagian data di atas, akhirnya didapat perbandingan ketiganya sebagai berikutUntuk mencari jumlah seluruh pohon, dapat menggunakan rumus berikutJumlah rasio rasio pohon pisang x jumlah pohon pisangJadi, jumlah seluruh pohon adalah 86 Menghitung SkalaSkala adalah perbandingan antara ukuran pada gambar model dengan ukuran sebenarnya. Adapun persamaan skala, yaituSkala = ukuran gambar ukuran sebenarnyaDikutip dari Cara Mudah Menghadapi Ujian Nasional 2008 Matematika SMP oleh Ruslan Tri Setiawan 2007 4, berikut contoh soal untuk menghitung skalaPada sebuah peta dengan skala 1 jarak antara kota X dan kota Y adalah 5 cm. Tentukan jarak kedua kota tersebut yang sebenarnya!Skala peta = 1 Berapa jarak kedua kota yang sebenarnya?Jarak sebenarnya = 5 cm x jarak sebenarnya kota X dan kota Y adalah 75 Saja Jenis-Jenis Perbandingan?Ilustrasi jenis-jenis perbandingan. Foto Unsplash. Dalam matematika, bentuk perbandingan terdiri atas beberapa jenis di antaranya yaitu bentuk perbandingan senilai, perbandingan berbalik nilai, skala, dan perbandingan bertingkat. Dari keempat jenis perbandingan tersebut memiliki pengertian dan rumus yang penjelasan lengkapnya dirangkum dari buku Pocket Shortcut Matematika SMP oleh Tim Master Eduka1. Perbandingan SenilaiPengertian perbandingan senilai adalah jenis perbandingan antara dua besaran sejenis. Jika salah satunya dinaikkan maka nilai besaran yang lain juga akan meningkat. Begitu pun sebaliknya, jika nilai suatu besaran menurun maka nilai besaran yang lain juga akan menurun. Besaran ini sering dikenal sebagai bentuk perbandingan senilai yaitu X1 x Y2 = X2 x Y1. Perbandingan senilai sering diaplikasikan dalam berbagai masalah kehidupan sehari-hari. Contohnya yaituBanyak barang dengan jumlah litern bensin dengan jarak yang tabungan dengan lama lebih jelas, berikut contoh soal perbandingan senilai yang bisa dipelajari dikutip dari buku Super Complete Rumus Matematika-IPA SMP/MTS 7-8-9 karya Elis Khoerunnisa dan Arinta SetianaPak Heru digaji selama 3 jam untuk memberikan pelajaran tambahan. Berapa waktu yang digunakan untuk pelajaran tambahan jika beliau mendapatkan gaji = 60Jadi waktu yang dibutuhkan adalah 60 Perbandingan Berbalik NilaiPerbandingan berbalik nilai adalah perbandingan dua besaran di mana jika nilai suatu besaran meningkat maka nilai besaran lainnya menurun. Begitu pun sebaliknya, jika nilai suatu besaran menurun maka nilai besaran lainnya akan meningkat. Adapun rumus perbandingan berbalik nilai yaitu X1 x Y1= X2 x perbandingan berbalik senilai ini diterapkan dalam masalah kehidupan sehari-hari seperti berikut iniKecepatan kendaraan dengan waktu pekerja proyek dengan waktu hewan ternak dengan waktu menghabiskan contoh soal cerita yang menggunakan konsep perbandingan berbalik nilai dalam kehidupan sehari-hariSebuah panti asuhan memiliki persediaan beras yang cukup untuk 20 orang selama 15 hari. Jika penghuni panti tersebut bertambah 5 orang, maka persediaan beras akan habis dalam waktu?Jadi persediaan beras pada panti asuhan tersebut akan habis dalam waktu 12 SkalaSkala adalah perbandingan antara jarak pada peta dengan jarak sebenarnya. Skala biasanya ditemui pada peta, gambar model, denah lokasi, miniatur, maket, dan lain-lain. Rumus perbandingan skala adalah ukuran pada gambar dibagi ukuran sebenarnya. Contohnya skala 1 artinya 1 cm pada gambar mewakili ukuran cm ukuran dari buku Cara Cespleng Cepat Hafal Semua Rumus Matematika SMP Kelas 1, 2, & 3 karya berikut contoh soal cerita perbandingan skala yang bisa dipelajariJarak antara kota A dan kota B pada peta adalah 2,5 cm. jika jarak sebenarnya kedua kota tersebut adalah 75 km, tentukan skala peta tersebut!Jarak pada peta adalah 2,5 cmJarak sebenarnya= 75 km = cmMaka skala pada peta adalah = jarak pada peta/jarak sebenarnya=2,5 cm / = 1/ skala pada peta tersebut adalah 1 itu Perbandingan Bertingkat?Perbandingan bertingkat adalah jenis perbandingan yang melibatkan lebih dari satu perbandingan. Soal perbandingan bertingkat biasanya menggunakan satuan atau jenis yang sama. Nah, untuk menyelesaikan perbandingan tersebut yakni dengan menggunakan rumus berikut iniac = bilangan 1 x bilangan 3 bilangan 2 x bilangan perbandingan jumlah uang yang dimiliki Gilang dan Amir adalah 45, sementara perbandingan uang Gilang dan Asep adalah 24. Apabila jumlah keseluruhan uang mereka adalah maka berapa jumlah uang yang dimiliki Asep?Perbandingan uang Gilang dan Amir adalah 4 uang Gilang dan Asep adalah 2 perbandingannya dikali 2, maka perbandingan uang Gilang dan Asep adalah 4 perbandingan uang ketiganya yaitu 84 jumlah perbandingan ketiganya yaitu 8+4+5 = 17. Jika jumlah seluruh uang mereka adalah Rp maka jumlah uang Asep adalahJadi, jumlah uang Asep adalah Rp ulasan singkat tentang rumus perbandingan dan cara menghitungnya. Semoga itu perbandingan dalam matematika?Bagaimana cara menulis perbandingan dalam matematika?Apa itu perbandingan senilai?
Persamaan garis lurus adalah salah satu cabang ilmu matematika yang dipelajari sejak kita duduk di bangku SMP. Sebenarnya apakah yang dimaksud dengan pgl ? dan bagaimanakah rumus – rumusnya serta cara menentukannya? Simak dibawah ini. Persamaan ini dapat diartikan juga dengan persamaan linier yaitu ada yang teriri dari satu variabel dan ada juga yang terdiri dari dua variabel. Untuk lebih jelasnya, perhatikan penjelasan – pejelasan di bawah ini. Sebelum kita mempelajari tentang rumus – rumusnya, kita harus memahami terlebih dahulu pengertian dan definisinya terlebih dahulu. Dan dalam sebuah persamaan garis lurus. Ada satu komponen yang tidak dapat terlepas darinya yaitu Gradien . Apakah yang dimaksud dengan gradien? Perhaikan penjelasan di bawah ini A. Pengertian Persamaan Garis Lurus Persamaan Garis lurus yaitu suatu perbandingan antara koordinat y dan koordinat x dari dua titik yang terletak pada sebuah garis. Sedangkan garis lurus sendiri ialah kumpulan dari titik – titik yang sejajar. Dan garis lurus dapat dinyatakan dalam berbagai bentuk. Dibawah ini beberapa contoh untuk menyatakan persamaan garis lurus, yaitu y = mxy = -mxy = ax = aax + by = abax – by = -abdan lain-lain Perhatikan gambar dibawah ini beberapa contoh grafik dan bentuk garis lurus serta cara menyatakan atau menentukannya [su_box title=”Contoh Cara Menentukan Persamaan Garis Lurus” box_color=”0031e8″] [/su_box] B. Pengertian Gradien Gradien yaitu Perbandingan komponen y dan komponen x , atau disebut juga dengan kecondongan sebuah garis. Lambang dari suatu gradien yaitu huruf “m”. Gradien juga dapat dinyatakan sebagai nilai dari kemiringan suatu garis dan dapat dinyatakan dengan perbandingan Δy/Δx Perhatikan gambar dibawah ini untuk menentukan gradien pada sebuah persamaan garis berikut [su_box title=”Cara Menentukan Gradien” box_color=”0031e8″] [/su_box] Berikut ini rumus mencari gradien garis dengan beberapa jenis persamaan Gradien dari persamaan ax + by + c = 0 Gradien yang melalui titik pusat 0 , 0 dan titik a , b m = b/a m = b/a Gradien Yang melalui titik x1 , y 1 dan x2 , y2 m = y1 – y2 / x1 – x2 atau m = y2 – y1 / x2 – x1 Gradien garis yang saling sejajar / / m = sama atau jika dilambangkan adalah m1 = m2 Gradien garis yang saling tegak lurus lawan dan kebalikan m = -1 atau m1 x m2 = -1 C. Rumus Cara Menentukan 1. Persamaan Garis Lurus bentuk umum y = mx Persamaan yang melalui titik pusat 0 , 0 dan bergradien m . Contoh Tentukan persamaan garis lurus yang melalui titik pusat 0 , 0 dan bergradien 2 ! Jawab y = mx y = 2 x 2. y = mx + c ->Persamaan garis yang / / dengan y = mx dan bergradien m -> Persamaan garis yang melalui titik 0 , c dan bergradien m. 0 , c adalah titik potong sumbu y . 3. Persamaan Garis Lurus Yang Melalui titik x1 , y1 dan bergradien m persamaannya yaitu y – y1 = m x – x1 4. Persamaan Garis Lurus Yang Melaui Dua titik yaitu x1 , y 1 dan x2 , y2 . Contoh Soal [su_box title=”Contoh Soal 1″ box_color=”0031e8″] Tentukan Gradien garis yang melalui titik 0 , 0 dengan titik A -20 , 25 ? Penyelesaian Diketahui Titik 0 , 0 Titik A -20 , 25 Ditanya m = . . .? Jawab m = b / a = 25 / -20 = – 5/4 [/su_box] [su_box title=”Contoh Soal 2″ box_color=”0031e8″] Tentukan Gradien garis yang melalui titik A -4 , 7 dan B 2 , -2 ? Penyelesaian Diketahui Titik A -4 , 7 TitikB 2 , -2 Ditanya m = . . ? Jawab m= y1 – y2 / x1 – x2m = 7 – -2 / -4 -2m = 9 / -6m = – 3/2 [/su_box] [su_box title=”Contoh Soal 3″ box_color=”0031e8″] Tentukan Gradien garis dengan persamaan garis 4x + 5y – 6 = 0 ? Penyelesaian Diketahui Persamaan 4x + 5y – 6 = 0 Ditanya m = . . .? Jawab m = -a / bm = -4 / 5 [/su_box] [su_box title=”Contoh Soal 4″ box_color=”0031e8″] Tentukan persamaan garis lurus yang melalui pusat koordinat dan bergradien – 4/5 ? Penyelesaian Diketahui Titik pusat koordinat 0 , 0 m = -4/5 Ditanya Persamaan garis lurus = . . .? Jawab y = mxy = -4 / 5 x-4y = 5x-4y -5y = 0 4y + 5y = 0 [/su_box] [su_box title=”Contoh Soal 5″ box_color=”0031e8″] Persamaan garis lurus yang melalui titik 0 , -2 dan m = 3/4 adalah . . .? Penyelesaian Diketahui Titik garis 0 , -2 m = 3 / 4 Ditanya Persamaan garis = . . .? Jawab Cara 1y = mx + cy = 3/4 x + -2 x4 4y = 3x – 8 -3x + 4y + 8 = 0 Cara 2y – y1 = m x – x1 y – -2 = 3/4 x – 0 y + 2 = 3/4 x x4 4y + 8 = 3x -3y + 4y + 8 [/su_box] [su_box title=”Contoh Soal 6″ box_color=”0031e8″] Tentukan persamaan garis G yang melalui garis 0 , 4 dan sejajar dengan garis H yang melalui titik pusat koordinat dan titik 3 ,2 ? Penyelesaian Diketahui Titik koordinat 0 , 0 dan titik 3 , 2 Ditanya Persamaan garis G = . . .? Jawab Langkah pertama kita tentukan gradiennya terlebih dahulu , yaitu m = y2 – y1 / x2 – x1m = 2 – 0 / 3 – 0m = 2/ 3 Karena Garis G // H , maka gradiennya adalah 2/3 DAN Melalui titik 0 , 4 , maka persamaan garisnya adalah y = mx + cy = 2 / 3 x + 4 x33y = 2x + 12 3y – 2x – 12 = 0 2x – 3y + 12 = 0 [/su_box] [su_box title=”Contoh Soal 7″ box_color=”0031e8″] Tentukan persamaan garis Z yang melalui titik 4 , 5 dan -5 , 3 ? Penyelesaian Diketahui Titik A 4 , 5 Titik B -5 , 3 Ditanya Persamaan garis Z = . . .? Jawab Cara 1Langkah pertama yaitu mencari gradien terlebih dahulu m = y1 – y2 / x1 – x2m = 5 – 3 / 4 – -5 m = 2 / 9 Selanjutnya yaitu memasukkan ke dalam rumus Persamaan garis melalui titik 4 , 5 dan bergradien 2 / 9y – y1 = m x – x1 y – 5 = 2/9 x – 4 y – 5 = 2/9x – 8/ 9y = 2/9 x – 8 / 9 + 5y = 2/9 x – 8/9 + 45 /9y = 2/9x – 37 / 9 Cara 2Tanpa mencari gradien, yaitu dengan cara y – 5 / 3 – 5 = x – 4 / -5 – 4y – 5 / -2 = x – 4 / -9-9 y – 5 = -2 x – 4 -9y + 45 = -2x + 8-9y + 2x +45 – 8 = 02x – 9y + 37 9 2/9 x – y + 37 / 9 y = 2/9x + 37 / 9 [/su_box] Demikian penjelasan mengenai rumus persamaan garis lurus dan beberapa contohnya . Semoga dengan penjelasan di atas, sedikit membantu memecahkan permasalahan dalam mengerjakan soal yang berhubungan dengan menentukan garis lurus . Inti dari materi ini adalah memahami apa itu gradien dan memahami antara titik yang dilalui baik titik pusat koordinat , titik koordinat y ataupun titik koordinat x. Atau jika dilambangkan yaitu titik pusat koordint 0 , 0 , titik koordinat x1 , y1 dan x2 , y 2 . Semoga bermanfaat . . . .
Hayo, siapa yang suka ngebanding-bandingin sesuatu? Misalnya, ketika nilai ujian dibagikan, biasanya momen membandingkan ini selalu berlangsung. Mulai dengan penasaran dan nanya, Eh, nilai lo berapa?’ Lalu, pas tahu nilai teman kita lebih besar, kita sakit hati, nyobek lembar ujian, lalu nelen bulat-bulat sambil menjerit, KENAPAAAA?!!’ Masalahnya, apa, sih, pengertian perbandingan itu? Bagaimana cara membandingkan yang benar dan apa saja jenis-jenis perbandingan? Stres karena nilai temen lebih gede saat dibandingin sumber Ternyata, meskipun terdengar remeh dan biasa kamu lakukan, kegiatan membandingkan itu ada kaitannya dengan matematika, lho. Ada cara-cara tertentu yang bisa kamu gunakan untuk melakukan perbandingan. Bagaimana Cara Membandingkan? Misalnya, nilai ujian matematika Yodi 80 dan nilai ujian matematika Rian 60. Nah, dari keterangan ini, kita dapat membandingkan data-data yang ada, yaitu 1. Nilai ujian Yodi 20 poin lebih besar. [Hal ini didapat dari perhitungan 80 – 60 = 20 poin] 2. Nilai Yodi empat per tiga kali lebih besar daripada Rian. [Hal ini didapat dari perhitungan 80/60 = 4/3] Dalam melakukan perbandingan, ada dua hal yang harus kamu perhatikan 1 Dalam membandingkan dua besaran dengan cara menghitung hasil bagi, besaran-besaran tersebut harus merupakan besaran yang sejenis. Contoh perbandingan yang salah Panjang pensil Ani ¾ kali berat badan Yudi Hal ini salah karena panjang pensil berada dalam satuan cm, sementara berat badan Yudi dalam satuan kg. Contoh perbandingan yang hampir benar Panjang pensil Ani 13 cm sementara panjang pensil Roberto 2 m. Hal ini karena kedua satuannya berbeda. Sehingga, ukuran satuannya harus disamakan terlebih dahulu menjadi sama-sama cm, atau sama-sama m. 2 Ketika melakukan perbandingan, pastikan hasil bagi kedua besaran suatu bilangan harus dalam bentuk yang paling sederhana. Misalnya, Kakak mempunyai uang sementara Adik Berapa perbandingan uang mereka? Kalau kamu menjawab 155 itu artinya kamu masih belum tepat. Bilangan itu masih bisa diperkecil lagi menjadi bentuk yang lebih sederhana. Berapa? Coba tulis di kolom komentar ya! Jenis-Jenis Perbandingan 1. PERBANDINGAN SENILAI Misalnya, terdapat himpunan-himpunan bilangan A = {1, 2, 3, 4, 5} dan B = {10, 20, 30, 40, 50} Himpunan A menyatakan waktu tempuh dalam satuan detik dan himpunan B menyatakan jarak yang ditempuh dalam satuan kilometer. Sekarang coba, deh, kamu pikir, apa nyumabungnya antara waktu tempuh dan jarak? Ya, betul. “sejauh”. Kita dapat mengaitkan waktu tempuh s “sejauh” jarak yang dia tempuh km. Maka hasilnya A 1 detik sejauh 10 km B 2 detik sejauh 20 km C 3 detik sejauh 30 km D 4 detik sejauh 40 km E 5 detik sejauh 50 km Kalau kita buat dalam bentuk tabel, maka akan menjadi Kamu sudah mulai bisa melihat polanya belum, Squad? Dalam perbandingan senilai, semakin tinggi nilai yang satu A, maka akan semakin tinggi juga nilai Bnya. Oleh karena itu, perbandingan jenis ini disebut sebagai perbandingan senilai. Karena nilai A akan “sejalan” dengan nilai B. Apabila data tadi kita olah dalam bentuk grafik koordinat kartesius, maka hasilnya akan seperti ini 2. PERBANDINGAN BERBALIK NILAI Misalnya, ada seorang peternak mempunyai 150 ekor sapi. Satu ikat rumput dihabiskan dalam waktu satu hari. Itu artinya, apabila peternak tersebut mempunyai A 75 ekor sapi, pakan ternak habis dalam waktu 2 hari B 50 ekor sapi, pakan ternak habis dalam waktu 3 hari C 30 ekor sapi, pakan ternak dihabiskan dalam waktu 5 hari D 25 ekor sapi, pakan ternak dihabiskan dalam waktu 6 hari Kalau kita buat dalam bentuk tabel, maka akan terlihat seperti berikut Dari data itu, dapat disimpulkan bahwa semakin sedikit jumlah sapi, maka jumlah yang dibutuhkan semakin banyak. Nah, perbandingan sepert ini dinamakan dengan perbandingan berbalik nilai. Apabila data tadi kita olah dalam bentuk grafik koordinat akrtesius, maka hasilnya akan menjadi Bagaimana, sudah mulai terlihat jelas kan perbedaan antara perbandingan senilai dan berbalik nilai. Kalau yang arahnya “sejalan”, itu termasuk ke dalam perbandingan senilai. Di sisi lain, kalau berbanding terbalik, masuk ke dalam perbandingan berbalik nilai. Kali ini kita sudah membahas tentang pengertian perbandingan, cara membuat perbandingan dan syarat-syaratnya, serta jenis-jenis perbandingan. Kalau kamu masih ada kesulitan atau tambahan, jangan ragu untuk tulis di kolom komentar ya, Squad. Lebih suka memelajari materi seperti ini sambil menonton video animasi lucu? ruangbelajar jawabannya! Referensi Raharjo M. 2018 Matematika SMP/MTs Kelas VII. Jakarta Erlangga Sumber foto GIF Orang Menangis’ [Daring]. Tautan Diakses 22 Desember 2020 Artikel diperbarui pada 22 Desember 2020
pada gambar dibawah ini perbandingan antara x dan y adalah